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RESUMO

Em pacientes sob ventilagdo mecénica, o conhecimento do estado clinico pul-
monar é fundamental para evitar barotraumas e hip6xias. No campo de monitoragao
pulmonar, a tomografia de impedéancia elétrica (TIE) se mostra um método bastante
promissor devido a altas diferencas de impedéncia entre pulmio aerado € pulméo co-
labado. A TIE é um método para obtengfio de imagens de um dominio a partir de
medidas elétricas (corrente ou voltagem) feitas nas fronteiras deste dominio. Com o
auxilio de algoritmos de reconstrugiio de imagens, € possivel estimar a distribuigdo de
impedancia elétrica dentro deste dominio. Atualmente o algoritmo mais conhecido € o
de retro-projecdo, idealizado por Barber e Brown em 1983. Entretanto, ele € limitado
a dominios 2D e possui sensibilidade nfio uniforme e baixa-resoluco espacial. Este
presente trabalho tem o objetivo de desenvolver um novo algoritmo baseado em iden-
tificacfo direta da matriz de sensibilidade para minimizar estas deficiéncias na pritica
clinica. Para tal serdo estudados e desenvolvidos os algoritmos de retro-projecéo; cri-
ado um novo algoritmo denominado caixa-preta, e feito uma comparacéo entre os al-

goritmos.



ABSTRACT

In pacients under mechanical ventilation, informations about the lung clinical
state are fundamentals for avoiding hypoxia and lung injuries. At pneumo-monitoring
field, the electrical impedance tomography (EIT) seems to be a good method due to
high impedance differences between inflated and collapsed lung tissues. The Electri-
cal Impedance Tomography is 2 method to estimate images of certain domain from
electrical measurements (current or voltage) obtained on the boundaries of this do-
main. Using image reconstruction algorithms, it is possible to estimate the electrical
impedance distribution inside this domain. The well known back-projection algorithm,
described by Barber and Brown in 1983 is limited to 2D domain, with low spatial res-
olution and non-uniform sensitivity. In this present work a new algorithm based on the
direct identification of sensitivity matrix to minimizing these deficiencies for medical
use is developed. Will also be studied and developed the back-projection algorithms to

be compared with the new one, called black-box algorithm.



Sumario

RESUMO

ABSTRACT

LISTA DE FIGURAS

LISTA DE TABELAS

1 INTRODUCAO

1.1
1.2
1.3

Propriedades Elétricasdos Tecidos . . . . . . . ... ... ... ...
Efeitos Biologicos da Corrente Elétrica . . . . . ... ... .. ...
Tomografia por Impedancia Eiétrica . . . . . .. .. .. .......
1.3.1 Meétodos de Estimagdode Impedancia . . . . . . ... .. ..

1.32 AplicagdesClinicas . . . . . . ... ... ... .. .....

2 OBJETIVOS

3 FUNDAMENTACAO TEORICA

31
3.2
3.3
34
3.5

Método de Elementos Finitos . . . . . . . .. ... ... .......
Problemas DiretoelInverso . . . . . ... ... ... ... ......
Algoritmo de Retro-Projecdo . . . . . . . ... .. .. ... ...
Algoritmo de Retro-Projec@o Filtrada . . . . . . ... .. ... ...
Método de Sensibilidade . . . . ... ... ... ... . L.

vii

—

Lo S O S T o T



4 IMPLEMENTACAO NUMERICA
4.1 Desenvolvimento do Algoritmo de Retro-Projecao . . . . . . ... ..
4.2 Desenvolvimento do Algoritmo de Retro-Projecdo Filtrada . . . . . .
4.3 Identificagiio Direta da Matriz de Sensibilidade . . . .. .. .. ...
4.3.1 DeterminaciodeB . . . .. .. .. ... .. oL
432 IndicesdeBrro . . . . . . . oo i it e
433 Regularizagbes . . . . . . . . . ..o
44 Teste Experimental . . . ... ... ... ... .. ... .. .. ...

4.5 Otimizacdo dos Pardmetros de Regularizagdio . .. .. ... ... ..

5 RESULTADOS E DISCUSSOES
5.1 Regularizaghes . . . . . . . . . . e

5.2 Comparagio dos algoritmos . . . . . .. ... 0oL
6 CONCLUSAO
7 CONSIDERACOES FINAIS
8 REFERENCIA BIBLIOGRAFICA

APENDICE A

APENDICE B

APENDICE C

v

17
17
18
19
20
22
23
23
25

26
26
33

45

46

47

51

54

61



Lista de Figuras

3.1
3.2

4.1
42
43
44

5.1
5.2
53
54
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15

Retro-projeco noraio-X . . . . . . v v vt v v v vt e e e 12
Linhas de equipotenciais. . . . . . ... ... ... ... ... 13
Malha pararetro-proje¢io . . . . . . . . .. ..o 17
Malha paraproblemadireto . . . . . . .. ... ... L. 18
Cubaexperimental. . . . . . .. ... ... .. ... ... 24
Malhaem3D . . . .. .. ... ... e e 24
B=1.0ey=1.0. ... . . . . 26
a=10ey=1.0. .. . . . . ... e 27
a=10eB=10 ... ... . . 27
B=1.0e2ey=1.0e"" paracilindroemposicio 1 . . ......... 29
B =1.0¢% ¢ Y= 1.0~ para cilindro em posigio 1 . . . ... ..... 30
B=1.0¢% e y=1.0¢7 para cilindro em posigdio 2 . . . .. ...... 31
o0=10e3,P=1.0ey=1.0e"% .. ... ... ... .. ... ... 32
Retro-Projecdo Simples . . . . . . .. .. ... ... o L 34
Retro-Projecio Filtrada . . . . . . .. .. .. ... ... ...... 35
Caixa-Preta-Heuristica. . . . . . ... ... ............. 36
Caixa-Preta- Colunade B . . . .. ... .. ... .. .. ...... 37
Caixa-Preta - Coluna de B X Retro-Projeciio Simples . . . . . . . .. 38
Caixa-Preta - Coluna de B X Retro-Projecéo Filrada . . . . . . . .. 39
Caixa-Preta - Colunade B X Heuristica . ... ............ 40

Caixa-Preta - Coluna de B X Retro-Projecio Simples . . . . . . ... 41



5.16 Caixa-Preta - Coluna de B X Retro-Proje¢éio Filtrada . . . . . . . .. 42

5.17 Caixa-Preta - Coluna de B X Heuristica . . . .. .. ... ... ... 43
7.1 Linhas equipotenciais em coordenadas (x1,x2) . . . . . ... ... .. 52
7.2 Fluxograma do algoritmo de retro-projecéo simples . . . . . . . . .. 61
7.3 Fluxograma do algoritmo de retro-projecéo filtrada . . . . .. . ... 62
7.4 Fluxograma do algoritmo de caixa-preta . . . . . ... .. ... ... 63

vi



Lista de Tabelas

1.1 Condutividade (Sm~!) de tecidos biolégicos . . . . .. ... .. ... 2
5.1 Valoresde BRedepicovariandoB. . . . ... .. ... .. ... .. 33
52 Valoresde BRnormalizados . . .. ... ............... 44
7.2 BR paracilindronaborda (Posicdo2) . . ............... 55
7.3 Valores de pico para cilindro no centro (Posi¢cao 1) . . .. ... ... 56
7.4  Valores de pico para cilindro na borda (Posicdo 2) . . . . . ... ... 57
7.5 Valores de BR e de pico paracilindronaposicao 1 . . .. ... ... 58
7.6 Valores de BR e de pico para cilindro na posicdo2 . . ... ... .. 59

7.1 BR paracilindro no centro (Posi¢do 1) . . . . . ... ... ... ... 60



1 INTRODUCAO

Nas tltimas décadas houve uma grande evolugio da ciéncia médica, tanto na
drea de terapéutica como na de diagndstico, € isso tem contribuido para a diminui¢&o
da taxa de mortalidade da populacdo. No campo do diagnéstico, surgiu hé alguns anos
um novo método de imagem, a tomografia por impedéancia eléirica, onde através de
informactes como correntes elétricas € potenciais elétricos, chega-se a distribuic¢ao de

resistividade da drea de interesse.

1.1 Propriedades Elétricas dos Tecidos

O corpo humano é formado por células, que se arranjam em estruturas deno-
minadas tecidos. Cada regifio do corpo apresenta um tipo celular distinto e, portanio,
arranjo tecidual distinto. Nas paredes celulares existe presenga de canais e bombas que
permitem a passagem de fons de um lado para outro, ou seja, do meio intra-celular para
0 meio extra-celular, ou vice-versa. Dessa forma, a concentracio de ions inter-celular
varia de tecido para tecido (GUYTON, 2002).

Diferentemente dos condutores metdlicos, a conducdo elétrica em tecidos bi-
olégicos é devido mais a movimentos idnicos do que a carregadores de cargas elétri-
cas. Na presenca de campos elétricos, a corrente de conducéo ¢é originada devido a
movimento dos fons dentro do espago inter-celular, isto €, ela é relacionada direta-
mente com a concenfragio de ions e com a arquitetura estrutural do tecido, uma vez
que quanto maior a concentracio idnica e mais facil a sua locomoc#o, maior serd a
corrente ¢létrica.

Na sua tese, Metherall (1998) apresenta uma tabela com as condutividades de

alguns dos tecidos biolégicos.



Frequéncia
Material Espécie 1Khz 10Khz 100Khz 1Mhz i0Mhz
Cérebro Bovino 2x10° 2x10* 4x10°  1x10° 3x10?
Figado Bovino 9x10* 3x10* 1x10* 2x10° 2x10?
Rim Bovino 2x10° 4x10*  1x10* 2x10°  4x10?
Misculo trans ~ Bovino  6x10°  3x10*  Ix10* 2x10° 1x10?
Misculo long  Bovino  1x106 3x10*  2x10°  4x10% 2x10?
Pulmio inflado  Bovino 1x10° 2x10* 3x10° 6x10% 2x10?
Utero Humano 1x105 2x10* 3x10° 1x10° 3x10?
Pele Humano 4x10* 3x10* 2x10* 2x10°  2x10?
Tecido Adiposo Humano 1x10* 4x10?  5x10'  2x10'  1x10!

Tabela 1.1: Condutividade (Sm~!) de tecidos biolégicos

Devido a influéncia da estrutura tecidual na condutividade elétrica, varios teci-
dos podem apresentar variaghes temporais de suas propriedades elétricas. Nopp et
all (1993) descobriram que as propriedades elétricas do tecido pulmonar séo altamente
dependentes das condigdes teciduais e que tanto a condutividade como a permitividade

diminuem com aumento do volume de ar inspirado.

1.2 Efeitos Biolégicos da Corrente Elétrica

Para se trabalhar com correntes elétricas no corpo humano, é preciso entender,
antes de tudo, os efeitos que elas causam no corpo humano. Em estudos realizados
pela equipe de Barber € Brown (1984), observou-se que baixos niveis de correntes em
freqiiéncias baixas, tais como (< 0.1 Hz), o principal efeito € a eletrdlise, observado
clinicamente através de formacéio de tlceras na pele ao redor do eletrodo. A medida
em que se aumenta a amplitude da corrente, comecam a ser estimulados os nervos
sensitivos e depois os nervos motores. Aumentando a freqiiéncia para acima de 10
kHz, a estimulagio neural passa a requerer um nivel muito alto de corrente aplicada.

Neste caso, os efeitos clinicos passam a ser aquecimento tecidual.



1.3 Tomografia por Impedancia Elétrica

A Tomografia por Impedincia Elétrica (TIE) é um método para obtenc@o de
imagens baseado na estimacgéo da distribui¢do da impedéncia elétrica em uma secéo
transversal do volume de interesse. Para a obtencZo das imagens, sdo colocados ao re-
dor do dominio em estudo eletrodos equi-espagados entre si € 0 processo de estimagao

pode ser feito através de:

o Correntes elétricas que sdo aplicadas através de dois eletrodos enquanto que os
valores de voltagem sdo registrados pelos demais. Com os dados de voltagem
obtidos e os da corrente aplicada, estima-se a distribui¢do das resistividade den-

tro do dominio;

e Ou, voltagens elétricas que sdo aplicadas e medem-se as correntes originadas
por estas voltagens. Com estes dados é possivel estimar a distribuigiio da resis-

tividade neste dominio.

Devido a limitagdes quanto ao niimero de eletrodos que podem ser postos ao re-
dor do dominio e, conseqiientemente, do nimero de voltagens medidas nas fronteiras
do dominio, uma vez que a presenc¢a muito proxima de um eletrodo ao outro inter-
fere tanto na medida de potencial elétrico como na passagem de corrente, as imagens
geradas apresentam resolucéo espacial limitada. Além disso, as TIEs apresentam sen-
sibilidade néo uniforme, sendo mais sensivel a perturbagdes de resistividade na borda
do dominio do que a perturbagdes de resistividade no centro do dominio. Entretanto,
apesar destes problemas, ela apresenta diversas vantagens para a pratica clinica, tais

Como:

e o pulmdo aerado apresenta uma grande diferenca na condutividade elétrica com
relacdo ao pulmio colabado, devido a presenga de ar, um isolante elétrico, como

demonstrado pelo Nopp et all (1993);

e ¢ uma técnica relativamente barata, comparada com um tomdgrafo de raio x, ou

a ressondncia magnética;



e nio ha efeitos adversos conhecidos derivados do seu uso, desde que observadas

as medidas de seguranca;

e os dados podem ser rapidamente coletados e, portanto, as alteragdes funcionais

podem ser avaliados;

e permite monitoracdo continua por periodos longos.

1.3.1 Métodos de Estimacao de Impedancia

Para se obter imagens, € preciso, além do aparelho, algoritmos de estimagcéo de

imagens. Atualmente os métodos de estimacdo de impedancia mais estudados séo:

1. Newton-Raphson;

2.. Filtro estendido de Kalman;

3. Markov Chain Monte Carlo (MCMC);
4. linhas equipotenciais (retro-projecdo);

5. método de sensibilidade.

O método de Newton-Raphson (MIRANDA, 2000) € um método numérico uti-
lizado na resolucéo de sistemas ndo lineares que apresentam a forma f;(p) =0, onde p
é um vetor de distribuicio de resistividade para i = 1,...N e que se destaca pela sua ro-
bustez e eficiéncia. No paper Comparison of Impedance Tomography Reconstruction
Algorithms, Yorkey et all (1986) fazem uma comparacio entre os diversos métodos
de imagem para TIE existentes e concluem que o método de Newton-Raphson ap-
resenta um resultado melhor do que outros métodos, além de provar a convergéncia
do método. Na tese de Miranda (2000), ele faz uma implementacio do método de
Newton-Raphson para resolver o sistema nfo linear associado a minimizagdo de um
funcional de erro quadratico, dado pela diferenca entre as voltagens medidas e calcu-
ladas.

O método de filtro de Kalman aborda o problema de estimag@o 6tima através do

método de minimos guadrados sob o ponto de vista probabilistico e de forma recursiva



(TRIGO, 2001). Com isso é possivel, a partir de poucas e incertas medidas, estimar
de forma recursiva, parimetros de um modelo que também apresenta erros. Na tese
de Trigo (2001) hd uma implementag@o do filtro estendido de Kalman, uma vez que o
problema de estimac#o é n#o linear, e portanto, o filtro linear de Kalman € inadequado
para resolver este problema ndo linear.

No método de MCMC, utiliza-se formulagdo estatistica do problema gerando a
funggo densidade de probabilidade de ocorrer determinada distribuigéo de resistividade
sabendo que ocorreu determinado conjunto de medidas de potencial elétrico. Para
chegar a estimativas individuais, aplica-se o método de integragdo de Monte Carlo
(KAIPIO, 2000).

Os trés primeiros métodos sfo classificados como métodos absolutos, enquanto
que os dois dltimos s&o métodos de diferencas de imagens, pois eles mostram a vari-
acdo da resistividade tecidual entre o instante da coleta dos dados ¢ um instante de
referéncia, normalmente tomado num instante inicial. Os métodos de diferencas de
imagens s#o utilizados para se evitar dois dos grandes problemas da TIE, o formato
irregular do contorno estudado e a natureza tri-dimensional do problema (BARBER e
BROWN, 1984).

As correntes elétricas, ao serem injetadas através de dois eletrodos, apresen-
tam fugas de correntes, principalmente num ambiente hospitalar, onde os pacientes
geralmente estdo conectados a outros aparelhos, fornecendo caminhos para a corrente
elétrica. Como estas fugas sfio praticamente impossiveis de serem avaliadas, uma vez
que necessitaria da presenca de eletrodos em todo o corpo, os dados no contorno ficam
comprometidos. Além disso, o formato do corpo em estudo também € importante. At-
ualmente sabe-se que a sensibilidade das medidas ao formato do corpo € tdo grande
quanto a sensibilidade 2 distribui¢do interna de resistividade (BROWN, 2003).

Como estes dois problemas ainda ndo foram totalmente solucionados, os gru-
pos de pesquisa da TIE geralmente utilizam diferengas de imagens para minimizar
estes erros. Isto porque os erros num mesmo paciente, tanto em termos de fuga de
corrente como no formato do contorno, sdo semelhantes em dois instantes proximos e
utilizando a imagem diferencial, estes erros se cancelam, diminuindo os seus efeitos.

Dessa forma, os métodos mais importantes em uso atualmente séio os de retro-projecao



¢ o de sensibilidade, cujas implementagdes serfo feitas neste trabalho, e portanto, serdo

discutidas mais adiante.

1.3.2 Aplicacoes Clinicas

O principal motivo para se admitir pacientes numa Unidade de Terapia Inten-
siva (UTI) é a necessidade de suporte ventilatério, quando o paciente ndo consegue,
por esforco préprio, respirar de forma eficiente, necessitando de assisténcia por meio
de aparelhos de ventilagdo mecanica. Em Advances in Mechanical Ventilation, Tobin

(2001) descreve as principais causas que levam ao uso de ventilagio mecanica:
1. faléncia respiratdria aguda;
2. coma;
3. exacerbacfio aguda da doenga pulmonar obstrutiva crénica (DPOC);

4. distirbios neuromusculares.

Para cada tipo de patologia existe o seu tratamento mais adequado. Dessa
forma, os aparelhos de ventilagfio apresentam modos distintos de operagfio para ad-
equar as necessidades do paciente. Existem atualmente trés modos principais de ven-

tilacdo mecénica nos aparelhos existentes:

ventilacdo assistida controlada o ventilador fornece um volume fixo de ar, desen-

cadeado pela inspiragfio do paciente, ou por um intervalo de tempo pré-determinado;

ventilacdo mandatoria intermitente uma frequéncia respiratéria fixa a volume con-
stante € fornecida pelo aparelho. Entre estas respiragdes mandatdrias, o paciente

pode respirar normalmente;

ventilacdo a pressiio de suporte uma pressdo pré-determinada de ar € fornecida a

cada inspiracao.

Apesar dos beneficios dos ventiladores mecédnicos, na ultima década tem-se

demonstrado que o seu uso inadequado pode levar a lesdes pulmonares tio ou mais



graves que aquelas decorrentes do uso de altas fragdes inspiradas de oxigénio (KNO-
BEL, 1994) ¢ (AMATO, 1998). Dessa forma, uma estratégia ventilatéria voltada a
preservagio da microestrutura pulmonar poderia ter um papel fundamental no restab-
elecimento da funcfo pulmonar. Para tanto, sfo necessédrios métodos de monitoragéo
eficientes, que fornecem informagdes dindmicas ao médico intensivista.

No campo de monitoragdo via métodos de imagem, a tomografia por impedan-
cia elétrica (TIE) se mostra bastante promissor, superando os métodos de imagem
convencionais, tais como tomografia computadorizado por raio-x (TC) e ressonéncia
magnética (RM). Apesar destes métodos (TC ¢ RM) serem excelentes em termos de

diagndsticos, eles sdo inadequados para monitoragao continua pois:

e a TC utiliza radiagio para obtengio de imagens, e exposi¢do prolongada a radi-

acdo é prejudicial 2 satide;

e a RM utiliza campo magnético para obtengio de imagens, o que impossibilita a
presenga de metal na sala durante o seu funcionamento. E este fato € pratica-

mente impossivel para um paciente sob ventilagiio mecénica;

e tanto a TC quanto a RM sfo aparelhos de grande porte, necessitando de um
espago razoavel para o seu funcionamento, o que eleva em muito o custo da

presenca destes aparelhos numa UTI;

» 0s aparelhos de TC e RM so caros devido a sua dimensdo e complexidade. Fi-
nanceiramente € impraticave! o uso individual destes aparelhos para monitoracéo

continua, uma vez que apenas um paciente por vez pode ser monitorado.

Dessa forma, a TIE se torna bastante atrativo para este tipo de aplicacfo clinica.



2 OBJETIVOS

O objetivo deste trabalho é criar um novo algoritmo de estimagéo de imagens
da TIE para uso clinico. Este algoritmo tem como idéia principal a estimagdo direta
da matriz de sensibilidade e cuja estrutura final é da forma {ﬁ—g} = [B] { %—(g} onde
a matriz B é a matriz desejada, sendo chamada de matriz de caixa-preta; a {'?SE} re-
presenta a distribuigio de resistividade normalizada e {%—‘;} representa as medidas de
potenciais elétricos obtidas no contorno do dominio.

Além disso, serdo desenvolvidos também os algoritmos de retro-projegdo sim-
ples, idealizados por Barber e Brown (1984), baseado na interpretacéo de Santosa e
Vogelius (1990), conforme descrito no artigo Backprojection aigorithm for electrical
impedance imaging e a versdo melhorada deste algoritmo, denominado retro-projecio
filtrada, onde as medidas de potenciais elétricos recebem um tratamento prévio antes
de serem retro-projetados, incluindo informagdes a priori, ¢ melhorando assim a im-
agem.

Atualmente os principais algoritmos em uso na 4rea clinica sdo os de retro-
projecio ¢ os de sensibilidade. Entretanto, os de retro-projecdo apresentam baixa
resolugio espacial e sensibilidade ndo uniforme, tendo melhores imagens na borda
do dominio do que no centro. Entretanto, em dreas como pneumologia, a borda do
dominio corresponde a parede tordcica, uma regifio de pouco interesse clinico, com-
parado com o centro do dominio, onde se situam os Grgdos como coragédo e pulmao.

Com relaciio aos algoritmos que utilizam método de sensibilidade, eles sdo
algoritmos pouco robustos pois necessitam da informacio de todos os eletrodos para
gerar as imagens. Entretanto, muitas vezes os eletrodos apresentam problemas de
contato com a parede toracica, prejudicando a monitoracgo.

O novo algoritmo busca manter a robustez dos algoritmos de retro-projecéo, ao



mesmo tempo em que uniformiza a sensibilidade ao dominio, dando um maior suporte
ao médico.

O desenvolvimento dos algoritmos de retro-projecio neste trabalho, além de
permitir comparacio dos resultados entre os dois métodos mais utilizados na atuali-
dade, possibilitard um melhor entendimento deste método, uma vez que falta na liter-

atura informagdes mais detalhadas a respeito da estrutura deste algoritmo.



3 FUNDAMENTACAO TEORICA

3.1 Método de Elementos Finitos

O método de elementos finitos é um método numérico para resolver problemas
de engenharia e fisica matematica (LOGAN, 2002). Ele ¢ especialmente interessante
em problemas onde no é possivel obter solugdes matemdticas analiticas, seja devido a
geometrias, cargas ou propriedades de materiais complexas. A formulagéo via elemen-
tos finitos resulta em solugdo de sistemas de equacdes algébricas, ao invés de sistemas
de equacdes diferenciais. A idéia principal € discretizar o dominio de interesse e re-
solver cada um dos elementos constituintes deste dominio para se obter a solugdo do
dominio inteiro.

Para a aplicaciio deste método deve-se em primeiro lugar discretizar o pro-
blema, escolhendo uma malha de elementos de tal forma que melhor represente o
dominio a ser estudado. Estes elementos podem ser, por exemplo, lineares, triangu-
lares ou quadraticos para problemas bi-dimensionais, ou podem ser tetraédricos, pen-
taédricos, para problems tri-dimensionais.

A seguir escolhe-se uma funcdo de aproximagio que representa a solugdo den-
tro de cada elemento. Essa funcio deve ter coeficientes desconhecidos que serdo de-
terminados de forma a minimizar o erro na solu¢do ¢ devem ser escritos em funcéo dos
valores nos nés da malha.

Ap6s a escolha da fung¢o de aproximagdo, monta-se o sistema matricial local,
correspondente a cada um dos elementos da malha, em funggio de grandezas nodais e
depois o sistema matricial global, correspondente ao dominio como um todo.

Por fim, aplicam-se as condi¢Ges de contorno e resolve o sistema de equagdes,

seja através de métodos diretos ou iterativos,
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3.2 Problemas Direto e Inverso

A tomografia por impedéincia elétrica envolve conceitos de problemas direto
¢ inverso. De acordo com Kaipio e Somersalo (2004), problemas inversos sio en-
contrados tipicamente em situagdes onde se faz observagdes indiretas da medida de
interesse. Um exemplo simples citado é a medida de temperatura através da dilatagfo
do merciirio. A fungfo que relaciona o volume com a temperatura é modelo direto,
enquanto que obter a temperatura a partir da variacio de volume do mercirio € um

modelo inverso.

Dessa forma, podemos entender problemas diretos e inversos como:

Probiema Direto quando conhece-se a excitacéo e as propriedades do meio e buscam-

se os efeitos causados pela excitagdo no meio;

Problema Inverso quando conhece-se o efeito e as propriedades do meio € busca-se
encontrar a excitacfio que originou este efeito, ou quando conhece-se o efeito e

a excitag@o e procura-se a distribuicdo de uma propriedade deste meio.

No caso da TIE, o problema direto é *sabendo a distribui¢do de resistividade do
dominio em estudo e a corrente aplicada nele, busca encontrar as medidas de poten-
ciais elétricos no contorno deste dominio’, enquanto que o problema inverso € ’con-
hecendo as medidas de potenciais elétricos e a corrente aplicada, busca-se encontrar a
distribuicdo de resistividade do dominio’.

Ao trabalhar com problemas inversos, é comum encontrar termos como crime
inverso. De acordo com Kaipio e Somersalo (2004), entende por crime inverso os
métodos numéricos que deixam os problemas inversos menos mal-postos do que real-

mente $30, obtendo assim resultados 6timos irreais. Isto ocorre quando:

e 0s dados simulados produzidos numericamente sdao obtidos com o uso de mesmo

modelo que foi utilizado para se inverter os dados e,
¢ 2a discretizacdo na simulac¢io numérica € a mesma da utilizada na invers3o.

Para se evitar crimes inversos, quando se trabalha com problemas inversos mal-

postos, sdo utilizados métodos chamados regularizagdes.
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Dessa forma, podemos considerar a TIE como:

1. inverso, pois deseja-se determinar a distribuicdo de resistividade (propriedade
do meio) a partir dos valores de corrente (perturbacio) e medidas de potencial

elétrico (efeitos);

2. mal-posto, pois dois elementos vizinhos do espago de voltagens na fronteira do
dominio ndo necessariamente levam a dois elementos vizinhos no espaco de

distribuicio de resistividade;

3. ndo-linear, pois a variagdo das medidas de voltagem néo € proporcional a vari-

agdo na distribuicao de resistividade.

3.3 Algoritmo de Retro-Projecao

O algoritmo de retro-projecio de TIE, idealizado por Barber e Brown em 1983,
é um algoritmo bastante eficiente ¢ de baixo custo computacional (YORKEY, 1986),
sendo um dos mais conhecidos da atualidade. A sua idéia principal é derivada do
algoritmo de retro-projecdo da tomografia computadorizada por raio-x. Neste, um
feixe de raio-x passa por um objeto num dominio, sofrendo atenuac¢do de sinal no
extremo oposto. Este sinal, captado por sensores no outro lado do objeto, € retro-
projetado pelo algoritmo de retro-projecdo, e a combinagio destes sinais, originados
por feixes distintos, resulta na imagem inicial. Além disso, faz-se ainda a suposic@o de
que a relagio entre a variagio de impedéncia e a variagio de potenciais elétricos € uma

relacéo linear.

/ N\ A Wi i

(a) (b} ©) G))
Figura 3.1: (a) Objeto num dominio. (b) Perturbagéo devido a um feixe de raio-x. (c)

Perturbagio devido a dois feixes de raio-x. (d) Imagem retro-projetada.
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Nas TIEs, diferentemente de raios-x, as linhas de corrente e de potenciais elétri-
cos niio percorrem um trajeto retilineo. Dessa forma, o algoritmo deve ser adaptado
para o novo trajeto. Num domfnio circular, pode-se identificar o padrdo das linhas

equipotenciais de voltagem pela figura 3.2.

Figura 3.2: Linhas de equipotenciais.

Estas linhas de potenciais se formam quando a corrente percorre pelos eletrodos
1 e 2, formando trajetos ortogonais as linhas de potenciais de voltagem.
Para o equacionamento do problema, foram feitas as seguintes hipoieses, de

acordo com Santosa e Vogelius (1990):
1. o dominio é bidimensional;
2. ndo ha fontes de corrente internas ao dominio;
3. o meio & isotrdpico;
4, o contorno da regiao de interesse € circular;
5. os eletrodos estio equidistantes um do outro, ac redor do dominio;
6. a distribuicfio de resistividade inicial € uniforme;

7. as alteragOes de resistividade sdo pequenas.
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E o resultado final € a equacdo 3.1:

—=——i8—U(2V—1) 3.1)

onde g—% ¢ a variagio de condutividade normalizada em relacéo a um instante

SU

inicial Gg, m é o niimero de eletrodos utilizados e % € a variacdo de potencial elétrico

normalizada. A deducio completa estd no apéndlce.

Na pritica clinica, a interpretacio da imagem utilizando distribuigéo de con-
dutividades é menos comum do que imagens em termos de distribuicdo de resistivi-
dade. Dessa forma, Pai et all (2005a) propuseram uma variacfio do algoritmo de retro-

projecio, com interpretagfio em termos de resistividade. E a equagio final € da forma:

S _ 18U

2V —1 3.2
po m;3 Uy ( ) 2

Montando em forma matricial, obtemos:

(2)-m{2)

Neste formato, ap6s o calculo da matriz B, denominada matriz de retro-projegio,
a operagio passa a ser de apenas uma multiplicacio de matrizes, o que garante a rapi-
dez deste algoritmo na estimac3o de imagens.

Para se evitar confusio entre a matriz B de retro-projecio (do inglés backpro-
jection) e a matriz B de caixa-preta (do inglés black-box), neste trabalho sera utilizado

B em itdlico para matriz de retro-projecio e B em negrito para matriz caixa-preta.

3.4 Algoritmo de Retro-Projecao Filtrada

O algoritmo de retro-projecio pressupde que a distribuigdo de condutividade
inicial do corpo é uniforme, o gue ndo condiz com a realidade. Dessa forma, ¢
necessario a incorporagio de informagdes a priori para a corregio desta hipotese (AVIS,
1995) e (METHERALL, 1998).

Para a realizagao deste filtro, consideramos a existéncia de um vetor de dados de

5 E / e » .
medida normalizado U, tal que, ao ser retro-projetado, resultard em imagens corretas.
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o, = BU, (3.4)

Do problema direto, temos que

U, =Ko, (3.5)

onde F é o operador que identifica os potenciais elétricos nos eletrodos a partir

da distribui¢éo de condutividade. Substituindo as equagOes temos

U, = FBU, (3.6)

e invertendo a matriz FB temos a seguinte relacio:

U, = (FB)"'U, (3.7)

que relaciona as medidas corretas com as medidas. Dessa forma, a equagéo

final de retro-proje¢io se torna:

o, = B(FB)"'U, (3.8)

3.5 Método de Sensibilidade

O método de sensibilidade, no qual pertence o algoritmo de caixa-preta, busca
encontrar o quanto cada elemento do dominio é sensivel a variagio de potencial elétrico
na borda do dominio. Para tal o dominio € discretizado através de modelo de elementos
finitos.

O modelo matemético do método é 38U = S8, onde dU € a variagio de poten-
cial elétrico, S é a matriz de sensibilidade e 8¢ ¢ a variacio de condutividade. Na tese
de Metherall (1998), ele faz uma descri¢do das diversas formas para se encontrar esta

matriz de sensibilidade:

1. algoritmo iterativo linealizado assumindo variagdes pequenas na condutividade:
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2. método analitico para encontrar os coeficientes da matriz e, a partir destes, re-

construir os dados experimentais da cuba;

3. método iterativo baseado no teorema de Geselowitz onde a impedéancia medida
é relacionada com a variagdo de condutividade através de uma matriz de sen-
sibilidade computada a partir de uma distribuiciio de condutividade conhecida.
Comparando a impedincia medida com a tedrica e utilizando a mesma matriz S,
encontra uma nova variagfio de condutividade que ¢ utilizada para atualizar os

valores de condutividade. Apds algumas iteragdes chega-se a solucfio desejada.



4 IMPLEMENTACAO NUMERICA

Aqui neste capitulo serdo descritos como sdo construidos os diversos algorit-

mos ja citados.

4.1 Desenvolvimento do Algoritmo de Retro-Projec@o

Neste algoritmo procura-se encontrar o valor de potencial elétrico num ponto
dentro do dominio para aplicacéo da equacio 3.2.

Em primeiro lugar, os pontos onde serfio obtidos os dados para a composi¢io da
imagem final ¢ suas respectivas coordenadas sdo determinados. A seguir, computa os
valores de potenciais elétricos nestes pontos usando as linhas de equipotenciais. Como
nem sempre as linhas equipotenciais interceptam na borda no ponto onde hé disponi-
bilidade de medidas, faz-se uma interpolagio para obtencio destas medidas. Com os
dados obtidos, aplica-se a equagio 3.2 para montar a matriz B de retro-projegio.

Neste trabalho, foi utilizada uma malha de elementos finitos para obter os pon-
tos de interesse do dominio, que correspondem aos centréides do elemento triangular

da malha.

AV

&
il
:"l

Figura 4.1: Malha utilizada para se obter os pontos de interesse.
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Isto foi feito para que se possa comparar os resultados deste algoritmo com o
de caixa-preta, uma vez que o mimero de pontos existentes no dominio influencia dire-
tamente na resolugdo espacial da imagem final. Dessa forma, serdo utilizadas malhas
com nimero de elementos semelhantes para efeito de comparagao.

Com as coordenadas dos pontos conhecidas, faz-se uma mudanga de coorde-
nadas para o sistema {U,V}, como descrito em apéndice. A seguir, encontramos a
coordenada do ponto na borda do dominio equipotencial ao ponto de interesse através

das seguintes equagdes:

40
3 = o @D
e @2)

Xpg = 0 — 1

AT/
Usando os valores de potenciais elétricos destes pontos (xp3,xp4) DO ponto
(x1,x2), correspondente & coordenada do ponto de interesse, e aplicando a equagéo

3.2, chega-se a imagem desejada.

4.2 Desenvolvimento do Algoritmo de Retro-Projecao

Filtrada

Para este algoritmo, é necessdrio encontrar a matriz F do problema direto, que
identifica os valores de potenciais elétricos a partir dos valores de correntes elétricas ¢
das propriedades do dominio. Para tal, utilizamos a mesma malha da figura 4.1, porém

com a presenca de eletrodos (figura 4.2).

Y,
%
-t_’ﬁ
it
)

e

Figura 4.2: Malha utilizada para problema direto.
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Para resolver o problema direto, pode-se utilizar a formulacio de elementos
finitos em problemas de transferéncia de calor, segundo Logan (2002), como mostrado
em tese de Molina (2002). A matriz F distingue-se da matriz de sensibilidade H de-
scrita na tese de Molina pela normalizagfio dos dados de medidas e pela normalizagio
das imagens resultantes.

Depois de encontrar a matriz F, realiza-se a multiplicacio de matrizes para
obter B(FB)~!. Note que a matriz B é uma matriz mal-posta, portanto a sua inver-
sdo necessita de regularizacdes. Neste trabalho foi utilizado decomposigio de valores
singulares (SVD) para realizar esta inversdo.

Para a obtenc¢io da matriz B, foi utilizado o algoritmo de retro-projecéio simples.

4.3 Ildentificacao Direta da Matriz de Sensibilidade

A idéia central do método caixa preta é se imagens boas, representadas por vari-
acdes relativas de resistividade, e medidas boas, representadas por variagGes relativas
de potenciais nos eletrodos, estdo disponiveis, entdo a matriz que relaciona medidas
com as imagens pode ser estimada. O método forma um conjunto de imagens dife-
renciais € computa, usando modelos de elementos finitos, as respectivas variagcdes nos
potenciais dos eletrodos. A partir destes 2 conjuntos de informagdes, ele estima dire-
tamente a matriz B de caixa-preta. Este método assume a lineartdade entre variacéo de
potenciais nos eletrodos e a variagfio da resistividade elétrica.

Para isso, primeiro ele assume uma distribui¢dio de resistividade inicial a qual
sera usada como referéncia. Com esta referéncia, os potenciais elétricos sdo calcula-
dos, usando modelo de elementos finitos em 3D, incluindo o modelo de eletrodos, para

cada padréo de injecdo de corrente. A equacéo do problema direto, no caso, €:

(Y] %[0 = [¢)] (43)

onde U; corresponde a vetor de voltagens associado a i nés, e c; € o vetor de correntes
associado a j padrdes de corrente.
A perturbacio é imposta em cada elemento finito, um por vez. Os potenciais

nos eletrodos sao calculados e normalizados com relagdo ao potencial correspondente
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ao valor de referéncia. Os potenciais perturbados s&o arranjados em vetores. A matriz
de potenciais € entdo formado tal que cada coluna desta matriz € um vetor de potencial
perturbado normalizado. Através da matriz de potencial perturbado e da matriz de

perturbacéo de resistividade, a matriz B pode ser determinado.

4.3.1 Determinacdode B

O procedimento para se determinar a matriz B é:

1. assume uma resistividade elétrica conhecida em cada um dos » elementos do
dominio, arranjando-os como vetor p®. A linearizacio do modelo é feita em

volta de p°.
2. cada padrdo de injego de corrente é denominado por {c;}ux1 para j=1,2,...,m;
3. os potenciais nos eletrodos, U}), sd0 determinados pelo problema direto,

YloUl=c; , j=12,...m 4.4)
4. uma perturbagio conhecida na resistividade do i-nésimo elemento de p? é de-
nominado por 8p; ei=1,2,...,n;

5. vetores {8p},| sdo formados tal que todos os elementos s3o nulos, exceto o

i-nésimo elemento que contém 3p;, i. e., 8p’ ; =0pi;

6. para cada padrdo de corrente c;, os potenciais nos eletrodos, {U j‘} relacionado

com a perturbacdo da resistividade 8p‘ sdo determinados pelo problema direto,

YlgorsonUi=c; ,  Jj=12....m , i=12...n (45)

7. seja {U%}, 2, um vetor formado pelo {U?}mxl para j = 1,2,...,m, tal que,

oy

(4.6)
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10.

11.

12.

13.

14.
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seja {U'}2,c; um vetor formado por {U}}mx1 para j = 1,2,...,m, tal que,
_ Ui -

. Uj
U (4.7)

U

forma-se o vetor normalizado {y},x1 de tal forma que cada elemento, para

i=1,2,...,n,¢ .
op';
J (4.8)
Pj

{v'};=

forma-se o vetor normalizado {6'},2,, de tal forma que cada elemento, para

i=1,2,...,n¢

; Ut —uY;
{0 w1 =5 “9)
J

define a matriz W, ., tal que

Y= W' W oy (4.10)
observe que esta matriz € diagonal;
define a matrix 0,2, , tal que

Cugxn::[ ol . o .. eﬂ} 4.11)

como cada coluna de ¥ ¢ uma imagem e pode ser relacionada com a coluna de

® por uma matriz de retro-projecio, pode-se dizer que,

anxn = anmZG (4.12)

mexn

finalmente, determina a matrix B tal que minimiza um indice de erro a ser deter-

minado.

Uma vez que a matriz B é obtida, a estimativa de uma imagem diferencial

€ feita multiplicando B e o vetor de variagio de potencial do eletrodo normalizado

relacionado a cada padréo de corrente, de acordo com aeq. 4.13
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Ap =BAV 4.13)

onde {Ap}nx1 € de tal forma que i-nésimo elemento € P—Oﬂ parai=1,2,.

. . (VimedidoVpedido)
e {AV}, 2, é tal que j-nésimo elemento &é ~ g4} parg j=1,2,...,m"
medido j

4.3.2 indices de Erro

Para obter a matriz B a partir das matrizes ¥ ¢ ®, devemos minimizar um indice

de erro. Neste trabalho, ¢ indice de erro adotado é:

IE =E"E+oB!F"FB; + BB/ M"MB; (4.14)

onde E = ¥w; — B; e ® = 0/ (0€) 1.
O indice i nestas equagdes representa a coluna i da matriz. Desta forma, as
operagdes sdo realizadas nfio com a matriz inteira, mas com uma coluna de cada vez,

diminuindo os erros numéricos.

Como a matriz @@’ € mal-posta, para a sua inversio foi utilizada a regulariza-
¢éo de tikhonov. E a matriz @ passa a ser @ = @ (@@’ +y1) L.

Este indice de erro foi denominado "coluna de B", devido a manipulacdo por
colunas.

Este indice ndo é o dnico vidvel. No artigo A Black-Box Back-Projection Algo-
rithm For Electrical Impedance Tomography, Pai et all(2005b) utilizam outro indice

de erro denominado heuristico:

IE =tr {ETE + oB"F'FB + BB"M’MB} (4.15)

onde E = O(¥ — BO).
Nos dois indices acima podem ser observados os termos F7 F ¢ M M que sdo

as regularizactes utilizadas para melhorar a imagem final.
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4.3.3 Regularizacoes

Como foi dito anteriormente, ao trabalhar com problemas inversos mal-postos,
devemos utilizar regularizagdes. Neste trabalho, para a constru¢iio do algoritmo de

caixa-preta, foram utilizadas duas regulariza¢des onde:
FTF & um filtro passa alto para diminuir ruidos;
MTM 6 uma matriz de sensibilidade uniforme.

A fungio da matriz M é penalizar as informagoes presentes na borda do dominio
e esta penalizagfo estd relacionada com a distdncia normalizada ao centro do dominio.

Seja
P-0
"
a distancia normalizada do ponto P, e rg a distncia do centro até a borda do dominio.

(4.16)

¥yr=

A matriz M € uma matriz diagonal constituida por:

o0 .. 0

0~ .. 0
M= 2

0 0 Y

onde w € um coeficiente escolhido, e n € 0 niimero de elementos existentes na
malha.

Com a penalizacdo na borda do dominio, obtém-se uma imagem mais uni-
forme, uma vez que em TIE, as regides periféricas sdo mais sensiveis a variagéo de

resistividade do que nas regides centrais.

4.4 Teste Experimental

Para teste dos algoritmos desenvolvidos, sera utilizada uma cuba cilindrica de
acrilico de 300 mm de diimetro, contendo solugfo salina. Ao redor da cuba estio
posicionados 30 eletrodos para tomada de medidas e injecdo de correntes elétricas. A
variacdo da condutividade no dominio € realizada colocando um cilindro de acrilico de

32 mm de didmetro, conforme a figura 4.3.
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Figura 4.3: Cuba experimental.

A malha utilizada no algoritmo de caixa-preta é uma malha em 3D, para mini-

mizar problemas de fuga de correntes e para ser mais fidedigna ao modelo real.

VaNsvay avavas
B VAvav, SVAvey S 4
O Va4
ARSI ZA
A

(a) (b)

Figura 4.4: (a) Malha em vista superior. (b) Malha em vista obliqua.

O cilindro de acrilico € posicionado no centro da cuba e a 120 mm do centro

para efeito de comparagio, testando a sensibilidade dos algoritmos.
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4.5 Otimizacdo dos Parametros de Regularizacao

Como na formulaggio teérica temos 3 parimetros de regularizag@o (o, B e V),
podemos encontrar um valor 6timo destes pardmetros. Para tal utilizaremos um indice
denominado raio de borramento como critério de escolha.

O raio de borramento (BR), de acordo com Adler (1995), estima o quanto a
imagem fica "borrada”em relagfio ao objeto real. Para tal, utiliza a renderizagdo tridi-
mensional da imagem gerada e encontra um nivel que divide o volume em dois. A
intersec¢do deste plano encontrado com a imagem gerada forma uma 4rea, denom-
inada 4rea borrada, € o raio de borramento € a raiz quadrada da razdo entre a dreca

borrada e a drea da cuba circular. A equacfio do BR é:

BR=-2—=,/-% @.17)

onde A, é a drea borrada e A € a 4rea da cuba.

Variando os parimetros (o, B e ), obteremos diversos valores de BR. E com-
parando estes valores com a razéo entre o raio real do objeto e o raio da cuba, podemos
encontrar os parimetros gue fornecem melhores resultados em termos de raio de bor-

ramento.



5 RESULTADOS E DISCUSSOES

5.1 Regularizactes

Para se determinar os intervalos das regularizacdes, a fim de encontrar um trio
de parimetros (¢, B, Y)6timo, foi primeiro observado os efeitos de cada uma das regu-
larizacdes, variando um pardmetro por vez. No primeiro momento foi utilizado apenas
os dados do cilindro no centro da cuba, pois, como dito anteriormente, para uso clinico

o0 mais interessante € o centro, e ndo a borda. Primeira estimativa de parametros:

e Nas figuras 5.1(a) e 5.1(b), foram fixados os valores de § e ¥ em 1.0 , e os

valores de o em 1.0e 3 e 1.0e°.

e Nas figuras 5.2(a) e 5.2(b), foram fixados os valores de oL € Y em 1.06%, e os
valores de B em 1.0e7> e 1.0&°.

e Nas figuras 5.3(a) e 5.3(b), foram fixados os valores de & ¢ } em 1.06% ¢ os

valores de yem 1.0e2 e 1.0e~8.
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Podemos observar, a partir dos resultados obtidos nesta primeira estimativa,
que as figuras 5.1(a), 5.2(a) e 5.3(a) apresentam resultados mais compaliveis com o

esperado. Portanto:
e O valor de o deve estar mais proximo de 1.0¢~ do que de 1.0¢°;
e O valor de P deve estar entre 1.0¢7% e 1.0¢°, mas mais préximo de 1.0e73;
e 0 valor de ydeve estar mais perto de 1.0e~® do que de 1.0e~2

Com esta primeira estimativa, foram definidos os seguintes intervalos para um

ajuste mais refinado:
o 1.0e 7 <a< 1.0e™l;

o 1.0e72 < B <1.0e%;
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o 1.067 <y<1.0e73.

Com isso, foram obtidos os valores de raios de borramento normalizados (tabelas:7.1
e 7.2), ou seja, em relacdo ao valor calculado utilizando o raio do objeto real.

Como o BR estd normalizado em relagéo ao BR do cilindro real, o valor unitario
representa a situagdo ideal. Portanto, busca-se obter um resultado que tenha BR nor-
malizado préximo de um.

Sabemos que o Y é o responsdvel pela regularizacio de Tikhonov, e que influ-
encia diretamente na matriz mal-posta. Dessa forma, um valor muito alto de Y anularia
os efeitos dos outros pardmetros. Portanto devemos buscar um valor de 7y pequeno o
suficiente para ndo interferir no funcionamento dos outros pardmetros, mas que seja
grande o suficiente para regularizar a matriz @@7

Como as informagdes de interesse para uso clinico sdo as contidas no centro
do dominio, serio feitas andlises utilizando os dados do cilindro na posigio 1 para se
chegar a um conjunto de parimetros 6timos. Posteriormente, utilizando estes para-
metros, serd feita a andlise na posicfio 2 para efeito de validagio. Como a posicéo 1
é no centro e a posi¢iio 2 na borda do dominio, um resultado satisfatério nestas duas
posi¢des garantird uma imagem boa nas posi¢des intermedidrias do dominio.

Observando os dados da tabela 7.1, notamos que para Y= 1.0e 77, os valores de
BR quase nfo variam com a variacdo dos pardmetros o ¢ 3. Portanto, este valor de y é
muito alto para ser utilizado.

Para o cilindro na posi¢io 1, observamos que BR normalizado mais proximo
de valor unitdrio € o 1.033896. Plotando as imagens (fig.: 5.4(a) e 5.4(b)) podemos

observar uma boa imagem, porém com um valor de resistividade normalizada baixo.
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Black_box resistivity distribution with an objeet at the center of cube - 503 elements
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Figura 5.4: B = 1.0¢? ¢ Y= 1.0~ para cilindro em posigdo 1

Testando para o valor de y= 1.0¢~%, 0 BR mais préximo de unitdrio é 1.089822.

Plotando as imagens, obtemos as figuras 5.5(a) e 5.5(b).
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Black_box resistivity distribution with an object at the center of cube - 503 elsmenis
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Figura 5.5: B = 1.0¢? e Y= 1.0e~° para cilindro em posicio 1

Apesar da imagem ser boa, a resistividade normalizada diminuiu ainda mais.

Analisando os valores de pico das imagens (tabela 7.4), podemos observar que os paréa-
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metros encontrados anteriormente apresentam os menores valores de pico da resistivi-
dade normalizada. Como o objetivo é encontrar um conjunto de parimetros que nos
forneca uma sensibilidade uniforme, com boa resolugio espacial, devem ser analisados
também os valores de pico.

A partir da tabela 7.2, podemos perceber que na borda, o valor = 1.0¢? apre-
senta BR = 0. Olhando a imagem gerada, pode-se perceber que existe uma depressao
no centro da imagem que ndo condiz com a realidade (fig.: 5.6(a) ¢ 5.6(b)) e que

anularia os valores do BR.

Biack_bax resistivity tistcbuixm with s obyect 120mm apart of the contar of cube - 508 ekmianls Uack_bak retrily dislribulion with an bjact 12run pak of 16 cantar of cuba - H19 lemarts
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virw: 6.0800. 30.0600 scake: 1.0BOGN, 1.04E00 wicw: £0.0000. 30,6060 scalc: 1.00084, 1.0aRM

(@ o=1.0e3 () e=1.0e72

Figura 5.6: Ambos com = 1.0¢% e y= 1.0~ para cilindro em posigiio 2

Dessa forma, analisando os dados das tabelas 7.5 e 7.6, pode-se notar que para
B=1.0¢° encontram-se valores de pico mais préximos para as posi¢des 1 e 2, apesar
dos raios de borramento serem piores para este pardmetro na posigdo 1. Plotando
as imagens (fig.: 5.7(a) e 5.7(b)) podemos perceber que elas sdo compativeis com o
esperado. Olhando novamente para as tabelas 7.5 e 7.6, percebe-se que o pardmetro o
tem pouca influéncia nos resultados de BR e de valores de pico. Portanto, um terceiro
ajuste serd realizado variando apenas o parmetro B, fixando o pardmetro Y em 1.0e~°
(devido ao valor de pico na borda, para minimizar o intervalo de variagio do valor de
pico), e fixando arbitrariamente o valor de ¢l em 1.0¢73, uma vez que ele tem pouca

influéncia devido aos valores de outros parametros.
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1=1.0e"5 ¢ 0!,=1.Oe_3

Posicio 1

Posicfio 2

BR

Pico

B

BR

Pico

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

1.242588
1.242588
1.242588
1.242588
1.242588
1.242588
1.242588
1.242588
1.242588

0.750154
0.737850
0.725471
0.713119
0.700872
0.688787
0.676906
0.665256
0.653859

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

0.689264
0.689264
0.596920
0.596920
0.596920
0.596920
0.596920
0.596920
(.596920

1.669920
1.177340
0.909207
0.740564
0.624699
0.540187
0.475817
0.425156
0.384245
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Tabela 5.1: Valores de BR e de pico variando 8

Analisando a tabela 5.1, pode-se perceber que para f=4.0, os valores de pico
tanto na borda como no centro da cuba apresentam praticamente a mesma amplitude.

Sendo entdo o valor de escolha para este pardmetro.

5.2 Comparacao dos algoritmos

Nesta secfo serfio comparados os algoritmos de retro-projecéo, de retro-projecao
filtrada, o caixa-preta com fndice de erro heuristico e o com fndice de erro coluna de
B.

Como foi dito anteriormente, as imagens geradas pelos algoritmos de retro-
projecio apresentam sensibilidade nido uniforme, como podem ser vistos nas figuras
5.8(a), 5.8(b), 5.9(a) ¢ 5.9(b). Podemos perceber que tanto no de retro-proje¢do sim-
ples como no de retro-projecio filtrada, a imagem na borda apresenta um pico de resis-
tividade bem superior a imagem no centro da cuba (4,5 vezes para o de retro-projecéo

simples e 8 vezes no de retro-projecgio filtrada).
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FBP resistivty distribution with an ohject at the cenler of container - 502 elements
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Figura 5.9: Retro-Proje¢ao Filtrada

No caso dos algoritmos caixa-preta, obtemos uma imagem mais uniforme,

tendo uma variacio de 40% no heuristico e praticamente invaridvel no coluna de B.
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Figura 5.10: Caixa-Preta - Heuristica
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Figura 5.11: Caixa-Preta - Coluna de B

Em termos de resolugio espacial, comparando o caixa-preta coluna de B com
os outros algoritmos, temos que na posigio 1, ele é melhor (com maior resistividade

normalizada), do que os outros algoritmos.
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{b) Retro-Projecdo simples

Figura 5.12: Caixa-Preta - Coluna de B X Retro-Projecac Simples

38



Black_bon resistiity distribution with

an object at the center of cube - BO3 elements

"img_gamma_1a-006_alpha_1e-003_beta 4e000.bd" ———

07 -------
normalized resistivit nGgs —-—-
06 —--—--
05 —
08 r
F / 05 ——
gé r ::\;:" \ 0.45 =r------
gi [ 7S ‘.‘“"?':'2‘?.'/ .\\ 04 —-—
03 | '.--‘-'a‘ﬁ-i"‘g—f'”"‘ RE2 035 —--
0z ¢ SN NN el
il 1”“@&&’&‘99 —
82 2 A —

view: 60.0000, 30.8000 scale: 1.00000, 1.00000

{a) Coluna de B

FBP resistivity distribution with an abject at the center of container - 502 alements

notmalized resistit

cbd ooooppo
WA= o= N T

view: 60.0000, 30.0000 scale: 1.00000, 1.00008

AR
I

"502_BP _fil_spl_pl.ixt® ———

[P p—

045 —-—-

D4 —--—-

Wi 03% —
N 03 ——
LT e 025 coneee
NG 02—
SNy e
AT =

: s ——

(b) Retro-Projecio Filtrada

Figura 5.13: Caixa-Preta - Coluna de B X Retro-Proje¢io Filtrada
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Black_box resistivity distribution with an object at the center of cube - 503 efements
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Figura 5.14: Caixa-Preta - Coluna de B X Heuristica

Na posi¢io 2, temos que a resistividade normalizada do caixa-preta coluna de
B s6 é maior do que a de retro-projecdo simples. Isto se deve a ndo uniformidade dos

outros algoritmos, aumentando nas bordas e diminuindo no centro dos dominios.



Black_hox resistivity distribution with an object at the center of cube - 503 elements
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Figura 5.15: Caixa-Preta - Coluna de B X Retro-Projecdo Simples
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Black_box resistivity distribution with an ohject at the center of cube - 503 elements
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(b) Retro-Projeciio Filtrada

Figura 5.16: Caixa-Preta - Coluna de B X Retro-Projecéo Filtrada
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Black_box resistivity distribution with an ohject at the center of cube - 503 elements
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Figura 5.17: Caixa-Preta - Coluna de B X Heuristica

Em termos de raios de borramento, podemos observar na tabela que os algo-
ritmos caixa-preta (coluna de B ou heuristica) apresentam os valores de resistividade

normalizado préximos de um, sendo, portanto melhores que os de retro-projecio.



Retro-Projeciio Simples

Retro-Projecdo Filtrada

posl 2,820945 1,462152
pos2 1,378527 0,487381
Heuristica Coluna de B
posl 1,193838 0,713119
pos2 0,974771 0,740564

Tabela 5.2: Valores de BR normalizados




6 CONCLUSAO

Devido a uma distribui¢io mais uniforme de resistividade normalizada, pode-se
afirmar que a sensibilidade dos algoritmos caixa-preta sdo mais uniformes comparados
com os de retro-proje¢io. Com isso hd uma valorizag#o das informagées no centro do
dominio, o que € importante para uso clinico.

Houve também melhora na resolugio dos algoritmos caixa-preta em relagio
aos de retro-projecéo, sendo os valores de resistividade normalizada maiores.

A regulariza¢io dos pardmetros para o caixa-preta coluna de B deve ser feita
com cautela, uma vez que o critério de raio de borramento pode nio ser suficiente para
a geracdo de uma imagem nitida e fidedigna.

Nos testes foram observados que o filtro passa alto FTF apresenta pouca in-
fluéncia no resultado final, em comparagio com os outros dois parametros. Isto provavel-
mente é devido a influéncia dos outros neste.

No entanto, como pode ser observado, os pardmetros devem ser avaliados dire-
tamente pelas imagens resultantes e o uso de apenas um cilindro dentro da cuba pode
nZo ser suficiente para a melhor avaliacdo destes pardmetros. Para melhor avaliagio
do seu uso clinico, é necessario testes com seres vivos (humanos ou animais), obtendo

resultados mais adequados ao seu uso.



7 CONSIDERACOES FINAIS

Este trabalho apresentou a implementagio de quatro métodos de estimag@o de
imagem para Tomografia por Impedéncia Elétrica, sendo agrupados em dois grupos
principais: a de retro-projecdo e a de caixa-preta.

Atualmente o algoritmo de caixa-preta estd sendo avaliado em diversos hospi-
tais do mundo, entre eles Harvard Medical e Hospital das Clinicas da Universidade
de Sdo Paulo. Desta forma, os pardmetros de regularizacdo estdo sendo aperfeicoados
para pratica clinica.

No futuro, deve-se analisar uma melhor forma de se avaliar os algoritmos de
estimacio de imagens para TIE, além do método de raio de borramento, uma vez
que ele ndo atende a todas as necessidades, aprimorar os critérios de escolha para os
pardmetros de regularizacdo, e investigar outros indices de erro para se obter resultados

melhores.
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APENDICE A

Pelas leis de Maxwell, temos:

V.E =p/&ep (7.1)
VXE=0 (7.2)

onde V & o operador gradiente, £ € o campo elétrico, p € a densidade de carga,
€, € £y s80 as permitividades espaciais relativa e do vécuo.

O campo elétrico em termos de potencial elétrico U pode ser expresso como:
E=-VU (7.3)

No problema direto, considerando a forma geral da let de Ohm para um ponto

dentro de um condutor Shmico, temos:
J=0.E (7.4)

onde J é a densidade de corrente e ¢ a condutividade. Como nao ha fonte de

corrente no interior do meio, entao:

V.J=0 (7.5)

combinando as equacgtes 7.3, 7.4 e 7.5, temos:

V.(6VU) =0 (7.6)

Dessa forma, obtemos os seguintes modelos matematicos:
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V.(cVU)=0em Q (7.7)
Ga—U =J em Q2 (7.8)
on

Tendo uma pequena perturbago na condutividade &6 e o seu correspondente

U, as equagdes 7.7 ¢ 7.8 se tornam:

V.(6V8U) + V. (86VU) = 0 em (7.9)
Ga ®U) + SGa—U =0 em 0Q2 (7.10)
on on

Assumindo © uma esfera unitdria, 6 = 1 e &6 = 0 perto do dipolo, definido

como ponto médio entre dois eletrodos:

V28U = —V (86).VU em Q (7.11)

M =0 em Q2 (7.12)
on

E o problema inverso agora estd linearizado de forma que dado &U |, quere-
mos determinar um incremento consistente de do.

Para resolver este problema, Barber sugere o uso de transformacéo conforma-
cional (22), de acordo com a figura 7.1. Neste sistema de coordenadas, com a local-

izac¢do do dipolo mostrado na figura 7.1,

Figura 7.1: Linhas equipotenciais em coordenadas (x1,x2)

(7.13)

2
+
N
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X+

onde x; e x; sdo as coordenadas do ponto em questdo. Com isso podemos

v (7.14)

mapear o dominio Q no semiplano P = {V > %} e o problema das equagdes 7.11 e

7.12 simplifica no plano (U,V):

3(30)
2 ==

V23U = U em P (7.15)
o(dU) _f, 1

Ainda de acordo com Barber (5), a solucdo desta equagio pode ser aproximada
para:
oc 1 & oU

G_oz_n_zi:]U_O(zv_l) (7.17)

onde g—‘; € a variacdo de condutividade normalizada em relagfio a um instante
inicial 6, m € o nimero de eletrodos utilizados e ?J—Z ¢ a variac@o de potencial elétrico
normalizada.

Naequagio 7.17, Barber e Brown utilizam condutividade normalizada, ou seja,
a variacfio de condutividade sobre a condutividade homogénea. Teoricamente a condu-

tividade homogénea deve ser calculada. Mas na prética utiliza-se dados experimentais

tomados num certo instante inicial.



APENDICE B

Aqui neste apéndice estfio apresentadas as tabelas contendo os indices de raios
de borramento (BR) e com os valores de pico de resistividade obtidos a partir da vari-

acio dos pardmetros o, B e ¥
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v=10e >

Y=10e 6

y=10e=7

BR

o

B

BR

o

B

BR

10e-1
10e-1
10e-1

10e0
10e-1
10e-2

0.689264
0.689264
0.689264

10e-1
10e-1
10e-1
10e-1
10e-1

10e2
10el
10e0
10e-1
10e-2

0.000000
0.596920
0.689264
0.689264
0.689264

10e-1
10e-1
10e-1
10e-1
10e-1

10e2
10e1
10e0
10e-1
10e-2

0.000000
0.487383
0.689264
0.770620
0.770620

10e-2
10e-2
10e-2

0.689264
0.689264
0.689264

10e-2
10e-2
10e-2
10e-2
10e-2

10e2
10el

10e0
10e-1
10e-2

0.000000
0.596920
0.689264
0.689264
0.689264

10e-2
10e-2
10e-2
10e-2
10e-2

10e2
10el

10e0
10e-1
10e-2

0.000000
0.487383
0.689264
0.770620
0.770620

10e-3
10e-3
10e-3

10e0
10e-1
10e-2

0.689264
0.689264
0.689264

10e-3
10e-3
10e-3
10e-3
10e-3

10e2
10e1

10e0
10e-1
10e-2

0.000000
0.596520
0.689264
0.689264
0.689264

10e-3
10e-3
10e-3
10e-3
10e-3

10e2
10e1

10e0
10e-1
10e-2

0.000000
0.487383
0.689264
0.770620
0.770620

10e-4
10e-4
10e-4

10e0
10e-1
10e-2

0.689264
0.689264
0.689264

10e-4
10e-4
10e-4
10e-4
10e-4

10e2
10el

10e0
10e-1
10e-2

0.000000
(.596920
0.6839264
0.689264
0.689264

10e-4
10e-4
10e-4
10e-4
10e-4

10e2
10el

10e0
10e-1
10e-2

0.000000
0.487383
0.689264
0.770620
0.770620

10e-5
10e-5
10e-5

10e0
10e-1
10e-2

0.689264
0.689264
0.689264

10e-5
10e-5
10e-5
10e-5
10e-5

10e2
10el
10e0
10e-1
10e-2

0.000000
0.596920
0.689264
0.689264
0.689264

10e-5
10e-5
10e-5
10e-5
10e-5

10e2
10el
10e0
10e-1
10e-2

0.060000
0.487383
0.689264
0.770620
0.770620

Tabela 7.2: BR para cilindro na borda (Posicédo 2)



y=10e ©

v=10e~7

o

B

Pico

o

p

Pico

10e-1
10e-1
10e-1
10e-1
10e-1

10e2
10el
10e0
10-el
10-e2

0.234002
0.594658
0.684546
0.693531
0.694416

10e-1
10e-1
10e-1
10e-1
10e-1

10e2
10e1
10e0
10-el
10-e2

0.283584
0.723988
0.835366
0.846547
0.847645

10e-2
10e-2
10e-2
10e-2
10e-2

10e2
10el
10e0
10-el
10-e2

0.240107
0.638041
0.743670
0.754373
(0.755430

10e-2
10e-2
10e-2
10e-2
10e-2

10e2
10el
10e0
10-el
10-e2

0.290956
0.776795
0.907751
0.921113
0.922432

10e-3
10e-3
10e-3
10e-3
10e-3

10e2
10el
10e0
10-e1
10-e2

0.240734
0.642727
0.750154
0.761057
0.762134

10e-3
10e-3
10e-3
10e-3
10e-3

10e2
10el

10e0
10-el
10-e2

0.291714
0.782499
0.915689
0.929305
0.930650

10e-4
10e-4
10e-4
10e-4
10e-4

10e2
10el
10e0
10-¢l
10-e2

0.240797
0.643199
0.750808
0.761732
0.762811

10e-4
10e-4
10e-4
10e-4
10e-4

10e2
10el
10e0
10-el
10-e2

0.291790
0.783074
0.916491
0.930132
0.931480

10e-5
10e-5
10e-5
10e-5
10e-5

10e2
10el

10e0
10-el
10-e2

0.240803
0.643246
0.750874
0.761800
0.762879

10e-5
10e-5
10e-5
10e-5
10e-5

10e2
10el
10e0
10-el
10-e2

0.291798
0.783131
0.916571
0.930215
0.931563

Tabela 7.3: Valores de pico para cilindro no centro (Posigédo 1)
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Y=10e~6

v=10e~7

o

B

Pico

(84

B

Pico

10e-1
10e-1
10e-1
10e-1
10e-1

10e2
10el

10e0
10e-1
10e-2

0.039331
0.346341
1.579430
2.453870
2.597780

10e-1
10e-1
10e-1
10e-1

10e-2
10e-2
10e-2
10e-2
10e-2

10e2
10el
10e0
10e-1
10e-2

0.039380
0.350132
1.661270
2.657170
2.826730

10e-2
10e-2
10e-2
10e-2
10e-2

10e-1

10e-3
10e-3
10e-3
10e-3
10e-3

10e2
10el

10e0
10e-1
10e-2

0.039385
0.350516
1.669920
2.679380
2.851870

10e-4
10e-4
10e-4
10e-4
10e-4

10e2
10el
10e0
10e-1
10e-2

0.039385
0.350555
1.670790
2.681620
2.854410

10e-3

10e-3
10e-3
10e-3
10e-3

10e2
10el

10e-0
10e-1
10e-2

0.054797

0.377373
1.739100
2722770
2.886150

10e2
10e1

10e-0
10e-1

10e-2

10e2
10el
10e-0
10e-1
10e-2

0.055530
0.381430
1.828380
2.948030
3.140510
0.-055604
0.381841
1.837820
2.972630
3.168440

10e-4
10e-4
10e-4
10e-4
10e-4

10e2
10el

10e-0
10e-1
10e-2

0.055612

0.381882
1.838770
2975110

10e-5
10e-5
10e-5
10e-5
10e-5

10e2
10el

10e0
10e-1
10e-2

0.039385
0.350559
1.670880
2.681840
2.854660

10e-5
10e-5
10e-5
10e-5

i0e-5

10e2
10el
10e-0
10e-1
10e-2

0.055613
0.381886
1.838870
2.975360
3.171550

3.171270

Tabela 7.4: Valores de pico para cilindro na borda (Posigéo 2)
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v=10e~6

t=10e"7

B

BR

Pico

o

p

BR

Pico

10e-1
10e-1
10e-1
10e-1
10e-1

10e2
10el
10e0
10-el
10-e2

1.143015
1.242588
1.242588
1.193840
1.193840

0.234002
0.594658
0.684546
0.693531
0.694416

10e-1
10e-1
10e-1
10e-1
10e-1

10e2
10el
10e0
10-el
10-e2

1.089822
1.143015
1.143015
1.089822
1.089822

0.283584
0.723988
0.835366
0.846547
0.847645

10e-2
10e-2
10e-2
10e-2
10e-2

10e2
10el
10e0
10-el
10-e2

1.089822
1.242588
1.242588
1.193840
1.143015

(0.240107
0.638041
0.743670
0.754373
0.755430

10e-2
10e-2
10e-2
10e-2
10e-2

10e2
10el

10e0
10-el
10-e2

1.033896
1.143015
1.143015
1.089822
1.089822

0.290956
0.776795
0.907751
0.921113
(0.922432

10e-3
10e-3
10e-3
10e-3
10e-3

10e2
10el

10e0
10-el
10-e2

1.089822
1.242588
1.242588
1.143015
1.143015

0.240734
0.642727
0.750154
0.761057
0.762134

10e-3
10e-3
10e-3
10e-3
10e-3

10e2
10el

10e0
10-el
10-e2

1.033896
1.143015
1.143015
1.089822
1.089822

0.291714
0.782499
0.915689
0.929305
0.930650

10e-4
10e-4
10e-4
10e-4

10e-4

10e2
10el
10e0
10-el
10-e2

1.089822
1.242588
1.242588
1.143015
1.143015

0.240797
0.643199
0.750808
0.761732
0.762811

10e-4
10e-4
10e-4
10e-4
10e-4

10e2
10el

10e0
10-el
10-e2

1.033896
1.143015
1.143015
1.089822
1.089822

0.291790
0.783074
0.916491
0.630132
0.931480

10e-5
10e-5
10e-5
10e-5
10e-5

10e2
10el

10e0
10-el
10-e2

1.089822
1.242588
1.242588
1.143015
1.143015

0.240803
0.643246
0.750874
0.761800
0.762879

10e-5
10e-5
10e-5
10e-5
10e-5

10e2
10el

10e0
10-el
10-e2

1.033896
1.143015
1.143015
1.089822
1.089822

0.291798
0.783131
0.916571
0.930215
0.931563

Tabela 7.5: Valores de BR e de pico para cilindro na posi¢do 1
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y=10e—0

Y=10e’

B

BR

Pico

04

B

BR

Pico

10e-1
10e-1
10e-1
10e-1
10e-1

10e2
10el

10e0
10e-1
10e-2

0.000000
0.596920
0.689264
0.689264
0.689264

0.039331
0.346341
1.579430
2.453870
2.597780

10e-1
10e-1
10e-1
10e-1
10e-1

10e2
10e1

10e0
10e-1
10e-2

0.000000
(0.487383
0.689264
0.770620
0.770620

0.054797
0.377373
1.739100
2.722770
2.886150

10e-2
10e-2
10e-2
10e-2
10e-2

10e2
10el

10e0
10e-1
10e-2

0.000000
0.596920
0.689264
0.689264
0.689264

0.039380
0.350132
1.661270
2.657170
2.826730

10e-2
10e-2
10e-2
10e-2
10e-2

10e2
10e1
10e0
10e-1
10e-2

0.000000
0.487383
0.689264
0.770620
0.770620

0.055530
0.381430
1.828380
2.948030
3.140510

10e-3
10e-3
10e-3
10e-3
10e-3

10e2
10el

10e0
10e-1
10e-2

0.000000
0.596920
(.689264
0.689264
0.689264

(0.039385
0.350516
1.669920
2.679380
2.851870

10e-3
10e-3
10e-3
10e-3
10e-3

10e2
10el

10e0
10e-1
10e-2

0.000000
0.487383
0.689264
0.770620
0.770620

0.055604
0.381841
1.837820
2.972630
3.168440

10e-4
10e-4
10e-4
10e-4
10e-4

10e2
10el

10e0
10e-1
10e-2

0.000000
0.596920
0.689264
0.689264
0.689264

0.039385
0.350555
1.670790
2.681620
2.854410

10e-4
10e-4
10e-4
10e-4
10e-4

10e2
10el
10e0
10e-1
10e-2

0.000000
0.487383
0.689264
0.770620
0.770620

0.055612
0.381882
1.838770
2.975110
3.171270

10e-5
10e-5
10e-5
10e-5
10e-5

10e2
10el
10e0
10e-1
10e-2

0.000000
0.596920
0.689264
0.689264
0.639264

0.039385
0.350559
1.670880
2.681840
2.854660

10e-5
10e-5
10e-5
10e-5
10e-5

10e2
10el

10e0
10e-1
10e-2

(0.000000
0.487383
0.689264
0.770620
0.770620

0.055613
0.381886
1.838870
2.975360
3.171550

Tabela 7.6: Valores de BR ¢ de pico para cilindro na posicio 2
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¥=10e >

v=10e 6

v=10e 7

BR

o

B BR

o

B

BR

10e-1
10e-1
10e-1

10e0
10e-1
10e-2

1.378527
1.289494
1.289494

10e-1
10e-1
10e-1
10e-1
10e-1

10e2 | 1.143015
10el | 1.242588
10e0 | 1.242588
10e-1 | 1.193840
10e-2 | 1.193840

10e-1
10e-1
10e-1
10e-1
10e-1

10e2
10el
10e0
10e-1
10e-2

1.089822
1.143015
1.143015
1.089822
1.089822

10e-2
10e-2
10e-2

10e0
10e-1
10e-2

1.378527
1.289494
1.242588

10e-2
10e-2
10e-2
10e-2
10e-2

10e2 | 1.089822
10el | 1.242588
10e0 | 1.242588
10e-1 | 1.193840
10e-2 | 1.143015

10e-2
10e-2
10e-2
10e-2
10e-2

10e2
10el

10e0
10e-1
10e-2

1.033896
1.143015
1.143015
1.089822
1.089822

10e-3
10e-3
10e-3

10e0
10e-1
10e-2

1.334753
1.289494
1.242588

10e-3
10e-3
10e-3
10e-3
10e-3

10e2 | 1.089822
10el | 1.242588
10e0 | 1.242588
10e-1 | 1.143015
10e-2 | 1.143015

10e-3
10e-3
10e-3
10e-3
10e-3

10e2
10el

10e0
10e-1
10e-2

1.033896
1.143015
1.143015
1.089822
1.089822

10e-4
10e-4
10e-4

10e0
10e-1
10e-2

1.334753
1.289494
1.242588

10e-4
10e-4
10e-4
10e-4
10e-4

10e2 | 1.089822
10el | 1.242588
10e0 | 1.242588
10e-1 | 1.143015
10e-2 | 1.143015

10e-4
10e-4
10e-4
10e-4
10e-4

10e2
10el

10e0
10e-1
10e-2

1.033896
1.143015
1.143015
1.089822
1.089822

10e-5
10e-5
10e-5

10e0
10e-1
10e-2

1.334753
1.289494
1.242588

10e-5
10e-5
10e-5
10e-5
10e-5

10e2 | 1.089822
10el | 1.242588
10e0 | 1.242588
10e-1 | 1.143015
10e-2 | 1.143015

10e-5
10e-5
10e-5
10e-5
10e-5

10e2
10el

10e0
10e-1
10e-2

1.033896
1.143015
1.143015
1.089822
1.089822

Tabela 7.1:

BR para cilindro no centro (Posi¢ao 1)



APENDICE C

Aqui sfo apresentados os flaxogramas dos algoritmos implementados.

Inicio

|

Ler a malha K malha ]

Céleuln de pontes
equ potenciais na
berda

%7

Atribusicao de
potenciais nos
pontos caleglados

Ciélenlo das

resistividades devido
a estes potenciais

<@ Mm!agergda mairiz Wr\\)
| J-[ | /

Fim

Figura 7.2: Fluxograma do algoritmo de retro-projecéo simples.
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Inicio

Ler malha ¥ ~Waha |
N
Ler corrente

Calcuio da matix F

4

Célculo da mawix B

Multiplicagso F8

S

Irversao (FB) usando .
SvD

4

S‘ v
Muttiphcagso 14[| ™,

Blimv(FB)] lﬂb /

!

Fim

Figura 7.3: Fluxograma do algoritmo de retro-projecio filtrada.
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Ler malha L/ Malha

I
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Ler resisividade Resistvidade
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Ler cotrente Corrente

It

Calculo de U da meio
homogéneo

!

Perturbagio 1
alamanto por vez

4

Caleuio de U do meio
perturbado

d

Martagem
deWede®

Minimizagdo do (E I

|

N
Regutarizacoes

L
ol =
!

Firn

:

7

Figura 7.4: Fluxograma do algoritmo de caixa-preta.




